Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurocrit Care ; 37(3): 705-713, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35761126

RESUMO

BACKGROUND: Posttraumatic hydrocephalus is a known complication after traumatic brain injury, particularly affecting patients undergoing decompressive craniectomy. Posttraumatic hydrocephalus monitoring in these patients represents a common issue in neurosurgical practice. Patients require periodical assessments by means of computed tomography (CT) scans. This study presents a preliminary institutional series in which ultrasound was used as a bedside imaging technique to monitor ventricular size in patients harboring a polyetheretherketone (PEEK) cranioplasty. Exploiting the PEEK cranioplasty permeability to echoes, we evaluated the feasibility of this bedside imaging method in monitoring hydrocephalus evolution, determining effects of ventriculo-peritoneal shunt, and excluding complications. METHODS: Eight patients with traumatic brain injury harboring PEEK cranioplasty following decompressive craniectomy were prospectively evaluated. Ultrasound measurements were compared with CT scan data taken the same day, and ventricular morphometry parameters were compared. RESULTS: Ultrasound images through the PEEK cranioplasty were of high quality and intracranial anatomy was distinctly evaluated. A strong correlation was observed between ultrasound and CT measurements. Concerning distance between lateral ventricles frontal horns (IFH) and the diameter of the third ventricle (TV), we found a strong correlation between transcranial sonography and CT measurements in preventriculoperitoneal shunt (rho = 0.92 and p = 0.01 for IFH; rho = 0.99 and p = 0.008 for TV) and in postventriculoperitoneal shunt examinations (rho = 0.95 and p = 0.03 for IFH; rho = 0.97 and p = 0.03 for TV). The mean error rate between transcranial sonography and CT scan was 1.77 ± 0.91 mm for preoperative IFH, 0.65 ± 0.27 mm for preoperative TV, 2.18 ± 0.82 mm for postoperative IFH, and 0.48 ± 0.21 mm for postoperative TV. CONCLUSIONS: Transcranial ultrasound could represent a simplification of the follow-up and management of ventricular size of patients undergoing PEEK cranioplasty. Even if this is a small series, our preliminary results could widen the potential benefits of PEEK, not only as effective material for cranial reconstruction but also, in selected clinical conditions, as a reliable window to explore intracranial content and to monitor ventricular sizes and shunt functioning.


Assuntos
Lesões Encefálicas Traumáticas , Craniectomia Descompressiva , Hidrocefalia , Humanos , Craniectomia Descompressiva/métodos , Estudos de Viabilidade , Estudos Retrospectivos , Complicações Pós-Operatórias/etiologia , Crânio/cirurgia , Cetonas , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Hidrocefalia/etiologia , Polietilenoglicóis , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/cirurgia , Lesões Encefálicas Traumáticas/complicações
2.
Front Radiol ; 1: 790456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37492166

RESUMO

The treatment of recurrent high-grade gliomas remains a major challenge of daily neuro-oncology practice, and imaging findings of new therapies may be challenging. Regorafenib is a multi-kinase inhibitor that has recently been introduced into clinical practice to treat recurrent glioblastoma, bringing with it a novel panel of MRI imaging findings. On the basis of the few data in the literature and on our personal experience, we have identified the main MRI changes during regorafenib therapy, and then, we defined two different patterns, trying to create a simple summary line of the main changes of pathological tissue during therapy. We named these patterns, respectively, pattern A (less frequent, similar to classical progression disease) and pattern B (more frequent, with decreased diffusivity and decrease contrast-enhancement). We have also reported MR changes concerning signal intensity on T1-weighted and T2-weighted images, SWI, and perfusion imaging, derived from the literature (small series or case reports) and from our clinical experience. The clinical implication of these imaging modifications remains to be defined, taking into account that we are still at the dawn in the evaluation of such imaging modifications.

3.
Neuroradiology ; 62(6): 705-713, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32140783

RESUMO

PURPOSE: Susceptibility-weighted imaging (SWI) is useful for glioma grading and discriminating between brain tumor categories in adults, but its diagnostic value for pediatric brain tumors is unclear. Here we evaluated the usefulness of SWI for pediatric tumor grading and differentiation by assessing intratumoral susceptibility signal intensity (ITSS). METHODS: We retrospectively enrolled 96 children with histopathologically diagnosed brain tumors, who underwent routine brain MRI exam with SWI (1.5 T scanner). Each tumor was assigned an ITSS score by a radiology resident and an experienced neuroradiologist, and subsequently by consensus. Statistical analyses were performed to differentiate between low-grade (LG) and high-grade (HG) tumors, histological categories, and tumor locations. Inter-reader agreement was assessed using Cohen's kappa (κ). RESULTS: The interobserver agreement was 0.844 (0.953 between first reader and consensus, and 0.890 between second reader and consensus). Among all tumors, we found a statistically significant difference between LG and HG for ITSS scores of 0 and 2 (p = 0.002). This correlation was weaker among astrocytomas alone, and became significant when considering only off-midline astrocytomas (p = 0.05). Scores of 0 and 2 were a strong discriminating factor (p = 0.001) for astrocytomas (score 0) and for embryonal, choroid plexus, germ-cell, pineal, and ependymoma tumors (score 2). No medulloblastoma showed a score of 0. CONCLUSIONS: Our preliminary ITTS results in pediatric brain tumors somewhat differed from those obtained in adult populations. These findings highlight the potential valuable role of ITSS for tumor grading and discriminating between some tumor categories in the pediatric population.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Masculino , Gradação de Tumores , Estudos Retrospectivos
4.
Radiol Med ; 125(4): 416-422, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916104

RESUMO

PURPOSE: To assess the accuracy of dynamic susceptibility contrast-enhanced perfusion-weighted magnetic resonance imaging in glioma grading and brain tumor characterization of infratentorial tumors, and to investigate differences from supratentorial tumors. METHODS: This retrospective study, approved by the institutional review board, included 246 patients with brain tumors (184 supratentorial, 62 infratentorial), grouped by tumor type: high-grade gliomas (HGG), low-grade gliomas (LGG), metastases (Met), and primary central nervous system lymphoma (PCNSL). Relative cerebral blood volume (rCBV) and mean percentage of signal recovery (PSR) were calculated. For statistical analyses, lesions were grouped by location and histology. Differences were tested with Mann-Whitney U tests. From ROC curves, we calculated accuracy, sensitivity, specificity, PPV, and NPV, for rCBV and PSR. RESULTS: For infratentorial tumors, rCBV was highly accurate in differentiating HGG from LGG (AUC = 0.938). Mean PSR showed high accuracy in differentiating PCNSL and HGG from Met (AUC = 0.978 and AUC = 0.881, respectively). Infratentorial and supratentorial tumors had similarly high rCBV in HGG, high mean PSR in PCNSL, and low mean PSR in Met. The main differences were the optimum threshold rCBV values (3.04 for supratentorial, 1.77 for infratentorial tumors) and the mean PSR, which was significantly higher in LGG than in HGG in supratentorial (p = 0.035), but not infratentorial gliomas. Using infratentorial rCBV threshold values for supratentorial tumors decreased the sensitivity and specificity. CONCLUSION: rCBV and mean PSR were useful in grading and differentiating infratentorial tumors. Proper cutoff values were important in the accuracy of perfusion-weighted imaging in posterior fossa tumors.


Assuntos
Neoplasias Infratentoriais/diagnóstico por imagem , Neoplasias Supratentoriais/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Humanos , Pessoa de Meia-Idade , Adulto Jovem
5.
Radiol Med ; 123(8): 593-600, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29637389

RESUMO

OBJECTIVE: The study aimed to assess image quality when using dual-energy CT (DECT) to reduce metal artifacts in subjects with knee and hip prostheses. METHODS: Twenty-two knee and 10 hip prostheses were examined in 31 patients using a DECT protocol (tube voltages 100 and 140 kVp). Monoenergetic reconstructions were extrapolated at 64, 69, 88, 105, 110, 120, 140, 170, and 190 kilo-electron volts (keV) and the optimal energy was manually selected. The B60-140 and Fast DE reconstructions were made by CT. The image quality and diagnostic value were subjectively and objectively determined. Double-blind qualitative assessment was performed by two radiologists using a Likert scale. For quantitative analysis, a circular region of interest (ROI) was placed by a third radiologist within the most evident streak artifacts on every image. Another ROI was placed in surrounding tissues without artifacts as a reference. RESULTS: The inter-reader agreement for the qualitative assessment was nearly 100%. The best overall image quality (37.8% rated "excellent") was the Fast DE Siemens reconstruction, followed by B60-140 and Opt KeV (20.5 and 10.2% rated excellent). On the other hand, DECT images at 64, 69 and 88 keV had the worse scores. The number of artifacts was significantly different between monoenergetic images. Nevertheless, because of the high number of pairwise comparisons, no differences were found in the post hoc analysis except for a trend toward statistical significance when comparing the 170 and 64 keV doses. CONCLUSIONS: DECT with specific post-processing may reduce metal artifacts and significantly enhance the image quality and diagnostic value when evaluating metallic implants.


Assuntos
Artefatos , Prótese de Quadril , Prótese do Joelho , Metais , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
J Neurosurg Sci ; 61(6): 673-676, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26756253

RESUMO

Decompressive craniectomy (DC) may be necessary to save the lives of patients suffering from intracranial hypertension. However, this procedure is not complication-free. Its two main complications are hydrocephalus and the sinking skin-flap syndrome (SSFS). The radiological findings and the clinical evaluation may be not enough to decide when and/or how to treat hydrocephalus in a decompressed patient. SSFS and hydrocephalus may be not unrelated. In fact, a patient affected by hydrocephalus, after the ventriculo-peritoneal shunt, can develop SSFS; on the other hand, SSFS per se can cause hydrocephalus. Treating hydrocephalus in decompressed patients can be challenging. Radiological findings and clinical evaluation may not be enough to define the most appropriate therapeutic strategy. Cerebrospinal fluid (CSF) dynamics and metabolic evaluations can represent important diagnostic tools for assessing the need of a CSF shunt in patients with a poor baseline neurologic status. Based on our experience, we propose a flow chart for treating decompressed patients affected by ventriculomegaly.


Assuntos
Craniectomia Descompressiva/efeitos adversos , Hidrocefalia/etiologia , Humanos , Hidrocefalia/cirurgia , Hipertensão Intracraniana
7.
Biomed Res Int ; 2015: 736104, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26417600

RESUMO

It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients.


Assuntos
Lesões Encefálicas/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Humanos , Camundongos , Ratos
8.
Expert Rev Neurother ; 13(11): 1263-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24175724

RESUMO

Glioblastoma (GBM) is associated with a high degree of angiogenesis. Therefore, antiangiogenic therapy could have a role in the treatment of this tumor. The currently available treatment approaches acting against angiogenesis are mainly directed toward three pathways: VEGF pathway, VEGF-independent pathways and inhibition of vascular endothelial cell migration. It has been demonstrated that antiangiogenic therapy can produce a rapid radiological response and a decrease of brain edema, without significantly influencing survival. Future studies should consider that: animal models are inadequate and cells used for animal models (mainly U87) are deeply different from patient GBM cells; GBM cells may become resistant to antiangiogenic therapy and some cells may be resistant to antiangiogenic therapy ab initio; and angiogenesis in the peritumor tissue has been poorly investigated. Therefore, the ideal target of angiogenesis is probably yet to be identified.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Ensaios Clínicos como Assunto/métodos , Glioma/metabolismo , Glioma/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...